Fabrication of Graphene Nanoplatelet-Incorporated Porous Hydroxyapatite Composites: Improved Mechanical and in Vivo Imaging Performances for Emerging Biomedical Applications

17Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Three-dimensional nanocomposites exhibit unexpected mechanical and biological properties that are produced from two-dimensional graphene nanoplatelets and oxide materials. In the present study, various composites of microwave-synthesized nanohydroxyapatite (nHAp) and graphene nanoparticles (GNPs), (100 - x)HAp-xGNPs (x = 0, 0.1, 0.2, 0.3, and 0.5 wt %), were successfully synthesized using a scalable bottom-up approach, that is, a solid-state reaction method. The structural, morphological and mechanical properties were studied using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and universal testing machine (UTM). XRD studies revealed that the prepared composites have high-order crystallinity. Addition of GNPs into nHAp significantly improved the mechanical properties. Three-dimensional nanocomposite 99.5HAp-0.5GNPs exhibited exceptionally high mechanical properties, for example, a fracture toughness of ∼116 MJ/m3, Young's modulus of ∼98 GPa, and compressive strength of 96.04 MPa, which were noticed to be much greater than in the pure nHAp. The MTT assay and cell imaging behaviors were carried out on the gut tissues of Drosophila third instars larvae and on primary rat osteoblast cells for the sample 99.5HAp-0.5GNPs that have achieved the highest mechanical properties. The treatment with lower concentrations of 10 μg/mL on the gut tissues of Drosophila and 1 and 5 μg/mL of this composite sample showed favorable cell viability. Therefore, owing to the excellent porous nature, interconnected surface morphology, and mechanical and biological properties, the prepared composite sample 99.5HAp-0.5GNPs stood as a promising biomaterial for bone implant applications.

Cite

CITATION STYLE

APA

Kumar, S., Gautam, C., Mishra, V. K., Chauhan, B. S., Srikrishna, S., Yadav, R. S., … Rai, S. B. (2019, April 24). Fabrication of Graphene Nanoplatelet-Incorporated Porous Hydroxyapatite Composites: Improved Mechanical and in Vivo Imaging Performances for Emerging Biomedical Applications. ACS Omega. American Chemical Society. https://doi.org/10.1021/acsomega.8b03473

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free