Measurement and evaluation of finger tapping movements using log-linearized gaussian mixture networks

41Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

This paper proposes a method to quantitatively measure and evaluate finger tapping movements for the assessment of motor function using log-linearized Gaussian mixture networks (LLGMNs). First, finger tapping movements are measured using magnetic sensors, and eleven indices are computed for evaluation. After standardizing these indices based on those of normal subjects, they are input to LLGMNs to assess motor function. Then, motor ability is probabilistically discriminated to determine whether it is normal or not using a classifier combined with the output of multiple LLGMNs based on bagging and entropy. This paper reports on evaluation and discrimination experiments performed on finger tapping movements in 33 Parkinson's disease (PD) patients and 32 normal elderly subjects. The results showed that the patients could be classified correctly in terms of their impairment status with a high degree of accuracy (average rate: 93.1 ± 3.69%) using 12 LLGMNs, which was about 5% higher than the results obtained using a single LLGMN. © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

Cite

CITATION STYLE

APA

Shima, K., Tsuji, T., Kandori, A., Yokoe, M., & Sakoda, S. (2009). Measurement and evaluation of finger tapping movements using log-linearized gaussian mixture networks. Sensors, 9(3), 2187–2201. https://doi.org/10.3390/s90302187

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free