Optimizing a lupus autoantibody for targeted cancer therapy

25Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

The specificity of binding by antibodies to target antigens is a compelling advantage to antibody-based cancer therapy, but most antibodies cannot penetrate cells to affect intracellular processes. Select lupus autoantibodies penetrate into cell nuclei, and the potential for application of these antibodies in cancer therapy is an emerging concept. Here, we show that a divalent lupus anti-DNA autoantibody fragment with enhancing mutations that increase its ability to penetrate cell nuclei and bind DNA causes accumulation of DNA double-strand breaks in and is highly and selectively toxic to cancer cells and tumors with defective homology-directed repair of DNA double-strand breaks. These findings provide proof of principle for the use of optimized lupus autoantibodies in targeted cancer therapy.

Cite

CITATION STYLE

APA

Noble, P. W., Chan, G., Young, M. R., Weisbart, R. H., & Hansen, J. E. (2015). Optimizing a lupus autoantibody for targeted cancer therapy. Cancer Research, 75(11), 2285–2291. https://doi.org/10.1158/0008-5472.CAN-14-2278

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free