Glacier-melt-induced changes in runoff are of concern in northwestern China where glacier runoff is a major source for irrigation, industries and ecosystems. Samples were collected in different water mediums such as precipitation, glacial ice/snowcover, meltwater, groundwater and streamwater for the analysis of stable isotopes and solute contents during the 2009 runoff season in the Laohugou Glacial Catchment. The multi-compare results of δ18O values showed that significant difference existed in different water mediums. Source waters of streamflow were determined using data of isotopic and geochemical tracers and a three-component hydrograph separation model. The results indicated that meltwater dominated (69.9 ± 2.7%) streamflow at the catchment. Precipitation and groundwater contributed 17.3 ± 2.3% and 12.8 ± 2.4% of the total discharge, respectively. According to the monthly hydrograph, the contribution of snow and glacier meltwater varied from 57.4% (September) to 79.1% (May), and that of precipitation varied from 0% (May) to 34.6% (September). At the same time, the monthly contribution of groundwater kept relatively steady, varying from 9.7% (June) to 20.9% (May) in the runoff season. Uncertainties for this separation were mainly caused by the variation of tracer concentrations. It is suggested that the end-member mixing analysis (EMMA) method can be used in the runoff separation in an alpine glacial catchment. Editor Z.W. Kundzewicz; Associate editor Not assigned
CITATION STYLE
Jin-Kui, W., Xiu-Ping, W., Dian-Jiong, H., Shi-Wei, L., Xue-Yan, Z., & Xiang, Q. (2016). Streamwater hydrograph separation in an alpine glacier area in the Qilian Mountains, northwestern China. Hydrological Sciences Journal, 61(13), 2399–2410. https://doi.org/10.1080/02626667.2015.1112393
Mendeley helps you to discover research relevant for your work.