Abstract
Mathematical models of the immune response to the Human Immunodeficiency Virus demonstrate the potential for dynamic schedules of Highly Active Anti-Retroviral Therapy to enhance Cytotoxic Lymphocyte-mediated control of HIV infection.Methods: In previous work we have developed a model predictive control (MPC) based method for determining optimal treatment interruption schedules for this purpose. In this paper, we introduce a nonlinear observer for the HIV-immune response system and an integrated output-feedback MPC approach for implementing the treatment interruption scheduling algorithm using the easily available viral load measurements. We use Monte-Carlo approaches to test robustness of the algorithm.Results: The nonlinear observer shows robust state tracking while preserving state positivity both for continuous and discrete measurements. The integrated output-feedback MPC algorithm stabilizes the desired steady-state. Monte-Carlo testing shows significant robustness to modeling error, with 90% success rates in stabilizing the desired steady-state with 15% variance from nominal on all model parameters.Conclusions: The possibility of enhancing immune responsiveness to HIV through dynamic scheduling of treatment is exciting. Output-feedback Model Predictive Control is uniquely well-suited to solutions of these types of problems. The unique constraints of state positivity and very slow sampling are addressable by using a special-purpose nonlinear state estimator, as described in this paper. This shows the possibility of using output-feedback MPC-based algorithms for this purpose. © 2011 Zurakowski; licensee BioMed Central Ltd.
Cite
CITATION STYLE
Zurakowski, R. (2011). Nonlinear observer output-feedback MPC treatment scheduling for HIV. BioMedical Engineering Online, 10. https://doi.org/10.1186/1475-925X-10-40
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.