A theory on the role of π-electrons of docosahexaenoic acid in brain function

  • Crawford M
  • Thabet M
  • Wang Y
  • et al.
N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Background : Docosahexaenoic acid (DHA) has been the dominant acyl component of the membrane phosphoglycerides in neural signaling systems since the origin of the eukaryotes. In this paper, we propose, this extreme conservation, is explained by its special electrical properties. Based on the Pauli Exclusion Principle we offer an explanation on how its six methylene interrupted double-bonds provide a special arrangement of π-electrons that offer an absolute control for the precision of the energy of the signal. Precision is not explained by standard concepts of ion movement or synaptic strengthening by enhanced protein synthesis. Yet precision is essential to visual acuity, truthful recall and the exercise of a dedicated neural pathway. Concept : Synaptic membranes have been shown to actively incorporate DHA with a high degree of selectivity. During a learning process, this biomagnification will increase the proportion of membrane DHA with two consequential neuronal and synaptic enhancements which build into a David Marr type model of the real world: DHA induced gene expression resulting in enhanced protein synthesis; increased density of π-electrons which could provide memory blocks and provide for the preferential flow of a current in neural pathways. Proposal : Both the above imply memory from synaptic strengthening. We propose memory is achieved by the activation of neuronal synaptic activation with synaptic turnover resulting in enhanced membrane DHA, which in turn induces gene expression, protein synthesis and π-electron density. Repetition amplifies the process activating synapses, which form a matrix representing the memory. The electro-chemical potentials then fire the electrons as electromagnetic waves via the six methylene interrupted double bonds. These allow transmission at a specific energy level based on their quantum mechanical properties providing the precision required for faithful recall. It is difficult to conceive of protein synthesis alone providing for precision. Using the principle of the dual properties of photons and electrons we develop the idea of complex wave patterns representing the visual or auditory fields. These are likely to be non-computable. We suggest that harmonization of the electromagnetic waves can result in cohesion explaining recall and associations. The cohesion of electromagnetic flow leads to a surge above the resting level, which is recognized by the brain as, demonstrated in artificial, electrical stimulus during neurosurgery. Introduction : Depuis l’origine des eucaryotes, l’acide docosahexaénoïque (DHA) est l’acide gras majoritaire des phosphoglycérides des membranes dans les systèmes neuronaux de signalisation. Dans cet article nous proposons d’expliquer cette préservation du DHA par ses propriétés électriques spécifiques. À partir du « Principe d’Exclusion de Pauli », nous proposons une explication sur la manière dont les six double-liaisons successives du DHA, interrompues par un groupement méthylène, fournissent une disposition spécifique des électrons π qui offre un contrôle absolu de la précision du signal énergétique. Cette précision ne peut être expliquée par les concepts anciens basés sur les échanges ioniques ou sur un renforcement des synapses via une synthèse accrue de protéines. Pourtant, la précision est essentielle à l’acuité visuelle, à une mémoire fidèle et à la mise en œuvre d’une voie neurale dédiée, telle que décrite dans la partie I. Concept : Il a été démontré que les membranes synaptiques incorporent activement du DHA avec un haut degré de sélectivité. Au cours d’un processus d’apprentissage, cette « bio-amplification » va accroître la proportion de DHA dans les membranes avec, en conséquence, deux augmentations – neuronale et synaptique – selon un modèle de type « David Marr », du nom du neuroscientifique anglais qui a cofondé le champ des neurosciences computationnelles : l’expression de gènes induite par le DHA conduit à une augmentation de la synthèse protéique ; la densité accrue des électrons π pourrait apporter des « blocs de mémoire » et permettre un flux préférentiel de courant dans les voies neuronales. Proposition : Les deux propositions précédentes impliquent une mémorisation à partir du renforcement synaptique. Nous proposons que la mémoire se développe à partir d’une activation synaptique neuronale avec un turnover synaptique entraînant l’enrichissement de la membrane en DHA, qui induit à son tour l’expression des gènes, la synthèse des protéines et la densité en électrons π. Les phénomènes de répétitions amplifient ce processus d’activation des synapses qui forment alors la matrice représentative de la mémoire. Les potentiels électrochimiques excitent les électrons sous forme d’ondes électromagnétiques via les 6 double-liaisons interrompues par le groupe méthylène. Ceux-ci permettent une transmission à un niveau d’énergie spécifique reposant sur leurs propriétés de mécanique quantique, fournissant ainsi la précision requise pour une mémorisation fidèle. Encore une fois, il est difficile d’imaginer que cette précision puisse être obtenue à partie d’une simple synthèse de protéines. En utilisant le principe des propriétés des photons et des électrons, nous développons l’idée de motifs d’ondes complexes représentant les champs visuels ou auditifs. Ceux-ci sont susceptibles d’être « non-calculables » (non-computables). Et nous suggérons que l’harmonisation des ondes électromagnétiques peut entraîner une cohésion explicitant la mémorisation et les associations d’idées. La cohésion du flux électromagnétique conduit à l’apparition de pics au-dessus du niveau de repos, qui peuvent être reconnus par le cerveau, comme cela a pu être démontré par les stimuli électriques artificiels en neurochirurgie.

Cite

CITATION STYLE

APA

Crawford, M., Thabet, M., Wang, Y., Broadhurst, C., & Schmidt, W. (2018). A theory on the role of π-electrons of docosahexaenoic acid in brain function. OCL, 25(4), A403. https://doi.org/10.1051/ocl/2018011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free