Slow, stochastic transgene repression with properties of a timer

Citations of this article
Mendeley users who have this article in their library.


Background: When gene expression varies unpredictably between genetically identical organisms, this is sometimes ascribed as stochastic. With the prevalence of retroviral vectors, stochastic repression is often observed and can complicate the interpretation of outcomes. But it may also faithfully reflect characteristics of sites in the genome. Results: We created and identified several cell clones in which, within a given cell, retroviral transcription of a transgene was repressed heritably and essentially irreversibly. This repression was relatively slow; total repression in all cells took months. We observed the dynamics of repression and found that they were ergodic, that is, tending with a probability to a final state independent of previous conditions. Different positions of the transgene in the genome demonstrated different dynamics. At a position on mouse chromosome 9, repression abided by near perfect first-order kinetics and was highly reproducible, even under conditions where the number of cell generations per day varied. Conclusion: We propose that such a cell division independent 'off mechanism could play a role in endogenous gene expression, potentially providing an epigenetically based timer for extended periods. © 2006 Wang et al.; licensee BioMed Central Ltd.




Wang, C. L., Yang, D. C., & Wabl, M. (2006). Slow, stochastic transgene repression with properties of a timer. Genome Biology, 7(6).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free