Email spam detection using ensemble methods

5Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The swiftly growth of spam email has escalated the need to upgrade the existing spam detection and filtration methods. There is the existence of several machine learning methods for the classification and detection of email spam but these lacks in some cases. In this research work ensemble methods are adapted to detect the email spam. The machine learning methods of Multinomial Naïve Bayes and J48 Decision Tree algorithms are considered and ensembled. The considered ensemble methods are bagging and boosting. The experimentation is conducted on the dataset of CSDMC2010 Spam corpus. The results for the considered dataset are evaluated using individual classifiers, bagging, and boosting ensemble approaches. The system performance is accessed in terms of precision, recall, f-measure, and accuracy. The experimental outcomes indicates the distinguish results for the detection of email spam using ensemble methods.

Cite

CITATION STYLE

APA

Bhardwaj, U., & Sharma, P. (2019). Email spam detection using ensemble methods. International Journal of Recent Technology and Engineering, 8(3), 4148–4153. https://doi.org/10.35940/ijrte.C5485.098319

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free