Abstract
Lightweight design is one of the important ways to reduce automobile fuel consumption and exhaust emissions. At the same time, the fatigue life of automobile parts also greatly affects vehicle safety. This paper proposes a multi-objective reliability optimization method by integrating Monte Carlo simulation (MCS) with the NSGA-II algorithm coupled with entropy weighted grey relational analysis (GRA) for lightweight design of the lower control arm of automobile Macpherson suspension. The dynamic load histories of the control arm were extracted through dynamic sim-ulations of a rigid-flexible coupling vehicle model on virtual proving ground. Then, the nominal stress method was used to predict its fatigue life. Six design variables were defined to describe the geometric dimension of the control arm, while mass and fatigue life were taken as optimization objectives. The multi-objective optimization design of the control arm was carried out based on the Kriging surrogate model and NSGA-II algorithm. Aiming at the uncertainty of design variables, the reliability constraint was added to the multi-objective optimization to improve the reliability of the fatigue life of the control arm. The optimal design of the control arm was determined from Pareto solutions by entropy weighted grey relational analysis (GRA). The optimization results show that the mass of the control arm was reduced by 4.1% and the fatigue life was increased by 215.8% while its reliability increased by 7.8%. The proposed multi-objective reliability optimization method proved to be feasible and effective for lightweight design of a suspension control arm.
Author supplied keywords
Cite
CITATION STYLE
Jiang, R., Sun, T., Liu, D., Pan, Z., & Wang, D. (2021). Multi-objective reliability-based optimization of control arm using mcs and nsga-ii coupled with entropy weighted gra. Applied Sciences (Switzerland), 11(13). https://doi.org/10.3390/app11135825
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.