Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50

15Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Quorum sensing (QS) is a mechanism in which Gram negative bacterial pathogens sense their population density through acyl homoserine lactones (AHLs) and regulate the expression of virulence factors. Enzymatic degradation of AHLs by lactonases, known as quorum quenching (QQ), is thus a potential strategy for attenuating QS regulated bacterial infections. We characterised the QQ activity of soil isolate Lysinibacillus sp. Gs50 and explored its potential for controlling bacterial soft rot of crop plants. Lysinibacillus sp. Gs50 inactivated AHL, which could be restored upon acidification, suggested that inactivation was due to the lactone ring hydrolysis of AHL. Heterologous expression of cloned gene for putative hydrolase (792 bp) designated adeH from Lysinibacillus sp. Gs50 produced a ∼29 kDa protein which degraded AHLs of varying chain length. Mass spectrometry analysis of AdeH enzymatic reaction product revealed that AdeH hydrolyses the lactone ring of AHL and hence is an AHL lactonase. Multiple sequence alignment of the amino acid sequence of AdeH showed that it belongs to the metallo-β- lactamase superfamily, has a conserved "HXHXDH" motif typical of AHL lactonases. KM for AdeH for C6HSL was found to be 3.089 μM and the specific activity was 0.8 picomol min-1 μg-1. AdeH has not so far been reported from any Lysinibacillus sp. and has less than 40% identity with known AHL lactonases. Finally we found that Lysinibacillus sp. Gs50 can degrade AHL produced by Pectobacterium carotovorum subsp. carotovorum (Pcc), a common cause of soft rot. This QQ activity causes a decrease in production of plant cell wall degrading enzymes of Pcc and attenuates symptoms of soft rot in experimental infection of potato, carrot and cucumber. Our results demonstrate the potential of Lysinibacillus sp. Gs50 as a preventive and curative biocontrol agent.

Cite

CITATION STYLE

APA

Garge, S. S., & Nerurkar, A. S. (2016). Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PLoS ONE, 11(12). https://doi.org/10.1371/journal.pone.0167344

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free