Influence of long-range interactions on quantum interference in molecular conduction. A tight-binding (Hückel) approach

17Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

When certain pairs of atoms in a π-conjugated molecule are connected with nanometer-scale source and drain electrodes, the remarkable quantum interference (QI) effect may arise. In this case, the electron transmission probability is significantly suppressed due to the QI effect. Tight-binding approaches, such as the Hückel molecular orbital (HMO) model, have revealed important features of this quantum phenomenon. However, important deviations from experiments and from more sophisticated calculations are known for a variety of cases. Here, we propose an extension of the HMO method to include non-nearest-neighbor interactions. Such long-range interactions (LRIs) are implemented in the HMO model in the form of a damping function that decays as the topological distance - the number of bonds separating two atoms - gets larger. The proposed model is further developed so that a geometric modification, i.e., the rotation around a single bond, can be taken into account. Our results show that LRI affects both the location of the antiresonance peak due to QI and the intensity of QI, even suppressing it in some cases. These results agree well with what was observed in a Density Functional based Tight-Binding (DFTB) study reported in the literature. These properties can be interpreted on the basis of a graph-theoretic path-counting model as well as the molecular orbital theory. In addition, the geometric LRI model is shown to reproduce the change of transmission as a function of rotation around the single bond separating two benzene rings in biphenyl, in agreement with what was observed in both experiment and DFTB calculation.

Cite

CITATION STYLE

APA

Tsuji, Y., & Estrada, E. (2019). Influence of long-range interactions on quantum interference in molecular conduction. A tight-binding (Hückel) approach. Journal of Chemical Physics, 150(20). https://doi.org/10.1063/1.5097330

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free