Chemical stabilization of dispersed Escherichia coli for enhanced recovery with a handheld electroflotation system and detection by Loop-mediated Isothermal AMPlification

2Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Constraints related to sample preparation are some of the primary obstacles to widespread deployment of molecular diagnostics for rapid detection of trace quantities (≤103 CFU/mL) of food-borne pathogens. In this research, we report a sample preparation method using a novel handheld electroflotation system to concentrate and recover dilute quantities (102−103 CFU/mL) of Escherichia coli (E. coli) 25922 in artificially contaminated samples for reliable, rapid detection by loop-mediated isothermal amplification (LAMP). To protect suspended cells from shear stresses at bubble surfaces, a non-ionic surfactant (Pluronic-F68) and flocculant (chitosan oligosaccharide) were used to aggregate cells and reduce their surface hydrophobicity. Effective conditions for recovery were determined through multifactorial experiments including various concentrations of Pluronic-F68 (0.001, 0.01, 0.1, 1 g L-1), chitosan oligosaccharide (0.01, 0.1, 1, 10 g L-1), bacteria (102, 103, 104 CFU/mL E. coli 25922), recovery times (10, 15 and 20 minutes), and degrees of turbulent gas flux (“high” and “low”). The automated electroflotation system was capable of concentrating effectively all of the bacteria from a large sample (380 mL 0.1 M potassium phosphate buffer containing 102 CFU/mL E. coli) into a 1 mL recovered fraction in less than 30 minutes. This enabled detection of bacterial contaminants within 2 hours of collecting the sample, without a specialized laboratory facility or traditional enrichment methods, with at least a 2–3 order of magnitude improvement in detection limit compared to direct assay with LAMP.

Cite

CITATION STYLE

APA

Diaz, L., Li, Y., & Jenkins, D. M. (2021). Chemical stabilization of dispersed Escherichia coli for enhanced recovery with a handheld electroflotation system and detection by Loop-mediated Isothermal AMPlification. PLoS ONE, 16(1 January). https://doi.org/10.1371/journal.pone.0244956

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free