Sonosensitized Aggregation-Induced Emission Dots with Capacities of Immunogenic Cell Death Induction and Multivalent Blocking of Programmed Cell Death-Ligand 1 for Amplified Antitumor Immunotherapy

86Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The combination of immunogenic cell death (ICD) induction and immune checkpoint blockade has emerged as a major direction of cancer immunotherapy. Among currently available ICD inducers, sonosensitizers that produce reactive oxygen species (ROS) under an external trigger to evoke ICD of tumor cells have shown great promise. However, a highly efficient sonosensitizer-based ICD inducer with an aggregation-induced emission (AIE) characteristic has yet to be developed. Herein, a novel AIE sonosensitizer with a twisted molecular structure, very small energy gap between the singlet and triplet excited states (ΔEST), and efficient ROS generation ability, which can serve as an effective ICD inducer, is reported for sonodynamic processes in cancer immunotherapy. Furthermore, an AIE sonosensitizer-based nanosystem with surface modification of anti-PD-L1 peptide is constructed for boosting antitumor immunotherapy. In this system, AIE sonosensitizer-mediated sonodynamic therapy can successfully convert a hypoimmunogenic cold tumor to a hot one and further facilitate the multivalent blocking of programed death ligand (PD-L1) by anti-PD-L1 peptides. Such an advanced nanosystem could effectively initiate the activation of antitumoral immune reactions and modulation of an immunosuppressive microenvironment, contributing to systemic antitumor effects to further inhibit the growth of distant tumors.

Cite

CITATION STYLE

APA

Jia, S., Gao, Z., Wu, Z., Gao, H., Wang, H., Ou, H., & Ding, D. (2022). Sonosensitized Aggregation-Induced Emission Dots with Capacities of Immunogenic Cell Death Induction and Multivalent Blocking of Programmed Cell Death-Ligand 1 for Amplified Antitumor Immunotherapy. CCS Chemistry, 4(2), 501–514. https://doi.org/10.31635/ccschem.021.202101458

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free