Abstract
The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology? © 2013 The Authors. Published by the Royal Society.
Author supplied keywords
Cite
CITATION STYLE
Villaverde, A. F., & Banga, J. R. (2014). Reverse engineering and identification in systems biology: Strategies, perspectives and challenges. Journal of the Royal Society Interface, 11(91). https://doi.org/10.1098/rsif.2013.0505
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.