Abstract
Fibulin-5 (FBLN5) belongs to the Fibulin family of secreted extracellular matrix proteins, and our laboratory first established FBLN5 as a novel target for TGF-β in fibroblasts and endothelial cells. To better understand the pathophysiology of FBLN5, we carried out microarray analysis to identify fibroblast genes whose expressions were regulated by FBLN5 and TGF-β. In doing so, we identified fibromodulin (Fmod) as a novel target gene of FBLN5, and we validated the differential expression of Fmod and 12 other FBLN5-regulated genes by semi-quantitative real time PCR. Fmod belongs to the small leucine-rich family of proteoglycans, which are important constituents of mammalian extracellular matrices. Interestingly, parental 3T3-L1 fibroblasts displayed high levels of nuclear factor-κB (NF-κB) activity, although those engineered to express Fmod constitutively exhibited significantly reduced NF-κB activity, suggesting that Fmod functions to inhibit NF-κB signaling. By monitoring alterations in the activation of NF-κB and the degradation of its inhibitor, IκBα, we demonstrate for the first time that Fmod contributes to the constitutive degradation of IκBα protein in 3T3-L1 fibroblasts. Mechanistically, we observed Fmod to delay the degradation of IκBα by promoting the following: (i) activation of c-Jun N-terminal kinase; (ii) inhibition of calpain and casein kinase 2 activity; and (iii) induction of fibroblast apoptosis. Taken together, our study identified a novel function for Fmod in directing extracellular signaling, particularly the regulation of NF-κB activity and cell survival. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Cite
CITATION STYLE
Lee, Y. H., & Schiemann, W. P. (2011). Fibromodulin suppresses nuclear factor-κB activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. Journal of Biological Chemistry, 286(8), 6414–6422. https://doi.org/10.1074/jbc.M110.168682
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.