Construction and analysis of a genetically tuneable lytic phage display system

12Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Bacteriophage l capsid protein gpD has been used extensively for fusion polypeptides that can be expressed from plasmids in Escherichia coli and remain soluble. In this study, a genetically controlled dual expression system for the display of enhanced green fluorescent protein (eGFP) was developed and characterized. Wild-type D protein (gpD) expression is encoded by l Dam15 infecting phage particles, which can only produce a functional gpD protein when translated in amber suppressor strains of E. coli in the absence of complementing gpD from a plasmid. However, the isogenic suppressors vary dramatically in their ability to restore functional packaging to lDam15, imparting the first dimension of decorative control. In combination, the D-fusion protein, gpD::eGFP, was supplied in trans from a multicopy temperature-inducible expression plasmid, influencing D::eGFP expression and hence the availability of gpD::eGFP to complement for the Dam15 mutation and decorate viable phage progeny. Despite being the worst suppressor, maximal incorporation of gpD::eGFP into the lDam15 phage capsid was imparted by the SupD strain, conferring a gpDQ68S substitution, induced for plasmid expression of pD::eGFP. Differences in size, fluorescence and absolute protein decoration between phage preparations could be achieved by varying the temperature of and the suppressor host carrying the pD::eGFP plasmid. The effective preparation with these two variables provides a simple means by which to manage fusion decoration on the surface of phage l. © The Author(s) 2013. This article is published with open access at Springerlink.com.

Cite

CITATION STYLE

APA

Nicastro, J., Sheldon, K., El-Zarkout, F. A., Sokolenko, S., Aucoin, M. G., & Slavcev, R. (2013). Construction and analysis of a genetically tuneable lytic phage display system. Applied Microbiology and Biotechnology, 97(17), 7791–7804. https://doi.org/10.1007/s00253-013-4898-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free