We examined the relationship between zonulin and gastric motility in critical care patients and a translational mouse model of systemic inflammation. Gastric motility and haptoglobin (HP) 2 isoform quantification, proxy for zonulin, were examined in patients. Inflammation was triggered by lipopolysaccharide (LPS) injection in C57Bl/6 zonulin transgenic mouse (Ztm) and wildtype (WT) mice as controls, and gastro-duodenal transit was examined by fluorescein-isothiocyanate, 6 and 12 h after LPS-injection. Serum cytokines and zonulin protein levels, and zonulin gastric-duodenal mRNA expression were examined. Eight of 20 patients [14 years, IQR (12.25, 18)] developed gastric dysmotility and were HP2 isoform-producing. HP2 correlated with gastric dysmotility (r = − 0.51, CI − 0.81 to 0.003, p = 0.048). LPS injection induced a time-dependent increase in IL-6 and KC-Gro levels in all mice (p < 0.0001). Gastric dysmotility was reduced similarly in Ztm and WT mice in a time-dependent manner. Ztm had 16% faster duodenal motility than WT mice 6H post-LPS, p = 0.01. Zonulin mRNA expression by delta cycle threshold (dCT) was higher in the stomach (9.7, SD 1.4) than the duodenum (13.9, SD 1.4) 6H post-LPS, p = 0.04. Serum zonulin protein levels were higher in LPS-injected mice compared to vehicle-injected animals in a time-dependent manner. Zonulin correlated with gastric dysmotility in patients. A mouse model had time-dependent gastro-duodenal dysmotility after LPS-injection that paralleled zonulin mRNA expression and protein levels.
CITATION STYLE
Martinez, E. E., Lan, J., Konno, T., Miranda-Ribera, A., Fiorentino, M., Mehta, N. M., & Fasano, A. (2021). Novel role of zonulin in the pathophysiology of gastro-duodenal transit: a clinical and translational study. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01879-y
Mendeley helps you to discover research relevant for your work.