Bottles to trees: Plastic beverage bottles as an alternative nursery growing container for reforestation in developing countries

Citations of this article
Mendeley users who have this article in their library.


Reforestation is needed globally to help restore degraded sites, combat desertification, protect watersheds, and provide forest products. This involves planting forest tree seedlings grown in local nurseries, but technologies to produce quality seedlings are lacking in developing countries. Modern nursery containers used to propagate seedlings have internal-surface barriers (ribs or ridges) or side-slits to prevent root spiraling. These are cost prohibitive or unavailable in developing countries and so polybags (plastic bags) are more commonly used, despite their tendency to produce seedlings with deformed root systems that have less potential to establish on field sites. Discarded plastic bottles, which are readily available worldwide, may be a feasible alternative for seedling propagation. We conducted two experiments to assess the potential of repurposed plastic beverage bottles to grow quality trees: 1) Container Comparison-to evaluate Arizona walnut (Juglans major [Toor.] Heller) and Afghan pine (Pinus eldarica Medw.) seedling root and shoot development in two plastic bottle types compared to modern nursery containers and polybags, and 2) Bottle Modification- to examine the effects of root spiraling prevention techniques (side-slits, internal-ridges, and control) and container opacity (green, black, and clear) on Afghan pine seedling morphological attributes. Nursery growth and first-year seedling field performance were evaluated for both experiments. In experiment one, seedlings of both species had fewer spiraled roots in bottle containers compared to polybags. Arizona walnut had more fibrous root systems in polybags, while Afghan pine root system fibrosity was greatest in bottle containers. Firstyear field performance of both species was not affected by container type. In experiment two, less spiraled roots occurred in containers with air-slits and interior-ridges compared to the control. The effects of container opacity on seedling morphology were inconsistent. Root spiral prevention and opacity had no influence on Afghan pine one-year survival, field height and diameter, with the exception of opacity for height growth, whereby seedlings grown in green containers were taller than those grown in black containers, but seedlings grown in clear containers were similar to both. Our results provide the first evidence that plastic bottle containers may provide an effective alternative for production of high quality seedlings, which may benefit agroforestry, reforestation, restoration, and conservation programs in developing countries.




Khurram, S., Burney, O. T., Morrissey, R. C., & Jacobs, D. F. (2017). Bottles to trees: Plastic beverage bottles as an alternative nursery growing container for reforestation in developing countries. PLoS ONE, 12(5).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free