Combined in situ chemical and Sr isotopic compositions and U–Pb ages of the Mushgai Khudag Alkaline complex: Implications of immiscibility, fractionation, and alteration

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The Mushgai Khudag complex consists of numerous silicate volcanic‐plutonic rocks including melanephelinites, theralites, trachytes, shonkinites, and syenites and also hosts numerous dykes and stocks of magnetite‐apatite‐enriched rocks and carbonatites. It hosts the second largest REE–Fe–P–F–Sr–Ba deposit in Mongolia, with REE mineralization associated with magnetite‐apa-tite‐enriched rocks and carbonatites. The bulk rock REE content of these two rock types varies from 21,929 to 70,852 ppm, which is much higher than that of syenites (716 ± 241 ppm). Among these, the altered magnetite‐apatite‐enriched rocks are characterized by the greatest level of REE enrichment (58,036 ± 13,313 ppm). Magmatic apatite from magnetite‐apatite‐enriched rocks is commonly euhe-dral with purple luminescence, and altered apatite displays variable purple to blue luminescence and shows fissures and hollows with deposition of fine‐grained monazite aggregates. Most magmatic apatite within syenite is prismatic and displays oscillatory zoning with variable purple to yellow luminescence. Both magmatic and altered apatite from magnetite‐apatite‐enriched rocks were dated using in situ U–Pb dating and found to have ages of 139.7 ± 2.6 and 138.0 ± 1.3 Ma, respectively, which supports the presence of late Mesozoic alkaline magmatism. In situ87Sr/86Sr ratios obtained for all types of apatite and calcite within carbonatite show limited variation (0.70572– 0.70648), which indicates derivation from a common mantle source. All apatite displays steeply fractionated chondrite‐normalized REE trends with significant LREE enrichment (46,066 ± 71,391 ppm) and high (La/Yb)N ratios ranging from 72.7 to 256. REE contents and (La/Yb)N values are highly variable among different apatite groups, even within the same apatite grains. The variable REE contents and patterns recorded by magmatic apatite from the core to the rim can be explained by the occurrence of melt differentiation and accompanying fractional crystallization. The Y/Ho ratios of altered apatite deviate from the chondritic values, which reflects alteration by hydrothermal fluids. Altered apatite contains a high level of REE (63,912 ± 31,785 ppm), which are coupled with increased sulfur and/or silica contents, suggesting that sulfate contributes to the mobility and incor-poration of REEs into apatite during alteration. Moreover, altered apatite is characterized by higher Zr/Hf, Nb/Ta, and (La/Yb)N ratios (179 ± 48, 19.4 ± 10.3, 241 ± 40, respectively) and a lack of negative Eu anomalies compared with magmatic apatite. The distinct chemical features combined with con-sistent Sr isotopes and ages for magmatic and altered apatite suggest that pervasive hydrothermal alterations at Mushgai Khudag are most probably being induced by carbonatite‐evolved fluids al-most simultaneously after the alkaline magmatism.

Cite

CITATION STYLE

APA

Yang, F., Chen, W., Kynicky, J., Ying, Y., & Bai, T. (2021). Combined in situ chemical and Sr isotopic compositions and U–Pb ages of the Mushgai Khudag Alkaline complex: Implications of immiscibility, fractionation, and alteration. Minerals, 11(5). https://doi.org/10.3390/min11050450

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free