Prediction of Needle Physiological Traits Using UAV Imagery for Breeding Selection of Slash Pine

9Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Leaf nitrogen (N) content and nonstructural carbohydrate (NSC) content are 2 important physiological indicators that reflect the growth state of trees. Rapid and accurate measurement of these 2 traits multitemporally enables dynamic monitoring of tree growth and efficient tree breeding selection. Traditional methods to monitor N and NSC are time-consuming, are mostly used on a small scale, and are nonrepeatable. In this paper, the performance of unmanned aerial vehicle multispectral imaging was evaluated over 11 months of 2021 on the estimation of canopy N and NSC contents from 383 slash pine trees. Four machine learning methods were compared to generate the optimal model for N and NSC prediction. In addition, the temporal scale of heritable variation for N and NSC was evaluated. The results show that the gradient boosting machine model yields the best prediction results on N and NSC, with R2 values of 0.60 and 0.65 on the validation set (20%), respectively. The heritability (h2) of all traits in 11 months ranged from 0 to 0.49, with the highest h2 for N and NSC found in July and March (0.26 and 0.49, respectively). Finally, 5 families with high N and NSC breeding values were selected. To the best of our knowledge, this is the first study to predict N and NSC contents in trees using time-series unmanned aerial vehicle multispectral imaging and estimating the genetic variation of N and NSC along a temporal scale, which provides more reliable information about the overall performance of families in a breeding program.

Cite

CITATION STYLE

APA

Niu, X., Song, Z., Xu, C., Wu, C., Luan, Q., Jiang, J., & Li, Y. (2023). Prediction of Needle Physiological Traits Using UAV Imagery for Breeding Selection of Slash Pine. Plant Phenomics, 5. https://doi.org/10.34133/plantphenomics.0028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free