Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: A meta-analysis

31Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Ruminal microbes are vital to the conversion of lignocellulose-rich plant materials into nutrients for ruminants. Although protozoa play a key role in linking ruminal microbial networks, the contribution of protozoa to rumen fermentation remains controversial; therefore, this meta-analysis was conducted to quantitatively summarize the temporal dynamics of methanogenesis, ruminal volatile fatty acid (VFA) profiles and dietary fiber digestibility in ruminants following the elimination of protozoa (also termed defaunation). A total of 49 studies from 22 publications were evaluated. Results: The results revealed that defaunation reduced methane production and shifted ruminal VFA profiles to consist of more propionate and less acetate and butyrate, but with a reduced total VFA concentration and decreased dietary fiber digestibility. However, these effects were diminished linearly, at different rates, with time during the first few weeks after defaunation, and eventually reached relative stability. The acetate to propionate ratio and methane production were increased at 7 and 11 wk after defaunation, respectively. Conclusions: Elimination of protozoa initially shifted the rumen fermentation toward the production of more propionate and less methane, but eventually toward the production of less propionate and more methane over time.

Cite

CITATION STYLE

APA

Li, Z., Deng, Q., Liu, Y., Yan, T., Li, F., Cao, Y., & Yao, J. (2018). Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: A meta-analysis. Journal of Animal Science and Biotechnology, 9(1). https://doi.org/10.1186/s40104-018-0305-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free