Abstract
Three-dimensional (3D) hierarchical cabbage-like β-cobalt hydroxide (β-Co(OH)2) nanostructures were fabricated onto conducive textiles composed of copper-coated polyethylene terephthalate fibers by a simple one-step electrochemical deposition (ED) method. Under an external applied voltage of -0.75 V for 4 h, the hierarchical cabbage-like β-Co(OH)2 nanostructures were well decorated on the conductive textiles. During the ED process, they were self-assembled by the tangled layers of nanoplate (thickness of ~45-55 nm) building blocks and exhibited a cabbage-shaped architecture. The structure and morphology of the as-prepared hierarchical cabbage-like β-Co(OH)2 nanostructures were characterized. The growth mechanism of cabbage like β-Co(OH)2 nanostructures was also investigated by varying the growth time. Moreover, the feasibility test for supercapacitors by measuring the electrochemical properties of the as-prepared nanostructures was performed by cyclic voltammetry and galvanic charge-discharge measurements. The obtained results show that the cabbage-like β-Co(OH)2 nanostructures on the conductive textile substrate exhibited superior energy storage performance compared to the nanoplate morphology. This journal is
Cite
CITATION STYLE
Nagaraju, G., Ko, Y. H., & Yu, J. S. (2014). Self-assembled hierarchical β-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm, 16(48), 11027–11034. https://doi.org/10.1039/c4ce01696c
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.