Volumetric cine magnetic resonance imaging (VC-MRI) using motion modeling, free-form deformation and multi-slice undersampled 2D cine MRI reconstructed with spatio-temporal low-rank decomposition

15Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Background: The purpose of this study is to improve on-board volumetric cine magnetic resonance imaging (VC-MRI) using multi-slice undersampled cine images reconstructed using spatio-temporal k-space data, patient prior 4D-MRI, motion modeling (MM) and free-form deformation (FD) for real-time 3D target verification of liver and lung radiotherapy. Methods: A previous method was developed to generate on-board VC-MRI by deforming prior MRI images based on a MM and a single-slice on-board 2D-cine image. The two major improvements over the previous method are: (I) FD was introduced to estimate VC-MRI to correct for inaccuracies in the MM; (II) multi-slice undersampled 2D-cine images reconstructed by a k-t SLR reconstruction method were used for FD-based estimation to maintain the temporal resolution while improving the accuracy of VC-MRI. The method was evaluated using XCAT lung simulation and four liver patients’ data. Results: For XCAT, VC-MRI estimated using ten undersampled sagittal 2D-cine MRIs resulted in volume percent difference/volume dice coefficient/center-of-mass shift of 9.77%±3.71%/0.95±0.02/0.75±0.26 mm among all scenarios based on estimation with MM and FD. Adding FD optimization improved VC-MRI accuracy substantially for scenarios with anatomical changes. For patient data, the mean tumor tracking errors were 0.64±0.51, 0.62±0.47 and 0.24±0.24 mm along the superior-inferior (SI), anterior-posterior (AP) and lateral directions, respectively, across all liver patients. Conclusions: It is feasible to improve VC-MRI accuracy while maintaining high temporal resolution using FD and multi-slice undersampled 2D cine images for real-time 3D target verification.

Cite

CITATION STYLE

APA

Harris, W., Yin, F. F., Cai, J., & Ren, L. (2020). Volumetric cine magnetic resonance imaging (VC-MRI) using motion modeling, free-form deformation and multi-slice undersampled 2D cine MRI reconstructed with spatio-temporal low-rank decomposition. Quantitative Imaging in Medicine and Surgery, 10(2), 432–450. https://doi.org/10.21037/qims.2019.12.10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free