Fenbendazole (FBZ) is a common antiparasitic treatment used in research rodent colonies for biosecurity purposes. The effect of this compound has been studied in C57 mice, but never before in a strain of mice that has co-morbidities, such as the blood pressure high (BPH)/5. The BPH/5 mouse is an inbred genetic model of hypertension. While both male and female BPH/5 have high blood pressure, there is a metabolic sexual dimorphism with females displaying key features of obesity. The obese gut microbiome has been linked to hypertension. Therefore, we hypothesized that fenbendazole treatment will alter the gut microbiome in hypertensive mice in a sex dependent manner. To test the influence of FBZ on the BPH/5 gut microbiota, fecal samples were collected pre- and post-treatment from adult BPH/5 mice (males and non-pregnant females). The mice were treated with fenbendazole impregnated feed for five weeks. Post-treatment feces were collected at the end of the treatment period and DNA was extracted, and the V4 region of 16S rRNA was amplified and sequenced using the Illumina MiSeq system. The purpose was to analyze the fecal microbiome before and after FBZ treatment, the results demonstrate changes with treatment in a sex dependent manner. More specifically, differences in community composition were detected in BPH/5 non-pregnant female and males using Bray-Curtis dissimilarity as a measure of beta-diversity (treatment p = 0.002). The ratio of Firmicutes to Bacteroidetes, which has been identified in cases of obesity, was not altered. Yet, Verrucomicrobia was increased in BPH/5 males and females post-treatment and was significantly different by sex (treatment p = 5.85e-05, sex p = 0.0151, and interaction p = 0.045), while Actinobacteria was decreased in the post-treatment mice (treatment p = 0.00017, sex p = 0.5, interaction p = 0.2). These results are indicative of gut dysbiosis compared to pre-treatment controls. Lactobacillus was decreased with FBZ treatment in BPH/5 females only. In conclusion, fenbendazole does alter the gut microbial communities, most notable in the male rather than female BPH/5 mouse. This provides evidence that caution should be taken when providing any gut altering treatments before or during mouse experiments.
CITATION STYLE
Beckers, K. F., Schulz, C. J., Liu, C. C., Barras, E. D., Childers, G. W., Stout, R. W., & Sones, J. L. (2023). Effects of fenbendazole on fecal microbiome in BPH/5 mice, a model of hypertension and obesity, a brief report. PLoS ONE, 18(6 June). https://doi.org/10.1371/journal.pone.0287145
Mendeley helps you to discover research relevant for your work.