Reduction of hazardous incinerated bio-medical waste ash and its environmental strain by utilizing in green concrete

34Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

Abstract

Incinerated Bio-Medical Waste Ash (IBWA) is toxic waste material with broad potential (cancer, genetic risk, premature death, permanent disease) to inflict severe health damage for the atmosphere and humans. This waste is disposed of as landfill, which contaminates the underground water and environment. The effective way of disposal of IBWA is by utilizing it as a building material, which can reduce the hazardous toxic materials. The use of Geopolymer Concrete (GPC) combined with IBWA as a substitute for Ground Granulated Blast Furnace Slag (GGBS) has been researched for its ability to create a new type of Green Concrete. The physical and chemical properties were observed for the raw materials. IBWA was used at 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50% replacement by weight for GGBS. Mixing proportions were 1:2.21:3.48 respectively for GGBS, Manufacturing Sand (M-sand), and coarse aggregate. Fresh properties and mechanical properties were examined for all specimens. The findings show an increase in the setting time and flow of concrete and a decrease in density with improved utilization of IBWA. On the other hand, IBWA replacement for GGBS enhanced the mechanical properties. These results revealed that IBWA could be partially replaced as source material for Geopolymer Concrete. This research may contribute to the reduction of dangerous IBWA as a building material.

Cite

CITATION STYLE

APA

Suresh Kumar, A., Muthukannan, M., Kanniga Devi, R., Arunkumar, K., & Chithambar Ganesh, A. (2021). Reduction of hazardous incinerated bio-medical waste ash and its environmental strain by utilizing in green concrete. Water Science and Technology, 84(10–11), 2780–2792. https://doi.org/10.2166/wst.2021.239

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free