Iris feature extraction using Gray Level Co-occurrence Matrix and Gabor Kernel filter its impact on iris Huffman compression image

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Algorithms developed to identify people with iris image data have been tested in many field and laboratory experiment. This paper analysis some a parameters of iris image used to recognize human. Iris recognition system, which is applied based on segmentation, normalization, encoding, and matching is also describe in this paper. Circle Hough Transform segmentation module used to find the inner and outer boundaries of the iris. The experiment was carried out using CASIA v1 iris database with grayscale images. Shape, intensity, and location information for localizing the pupil or iris and normalizing the iris area a used iris segmentation by unwrapping circular area into a rectangular area. Normalized area will be used to extract the features using Gray Level Co-occurrence Matrix (GLCM) and Gabor filter, the feature compared the recognition accuracy using Support Vector Machines (SVM) and Naive Bayes classifiers. GLCM feature test results achieved 95.24% SVM classification accuracy, whereas using achieved 85.71% Naive Bayes. Gabor feature test results achieved 95.24% SVM classification accuracy, whereas using achieved 95.23% Naive Bayes. The classification process based on GLCM and Gabor features show that the SVM method have to highest recognition accuracy compare to Naive Bayes classifier.

Cite

CITATION STYLE

APA

Asmara, R. A., Yusron, R. D. R., Rahutomo, F., Ariyanto, R., Aji, D. K. P., & Choirina, P. (2019). Iris feature extraction using Gray Level Co-occurrence Matrix and Gabor Kernel filter its impact on iris Huffman compression image. In Journal of Physics: Conference Series (Vol. 1402). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1402/6/066036

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free