Separation of Monosaccharide Anomers on Photo-Click Cysteine-Based Stationary Phase: The α/β Interconversion Process Studied by Dynamic Hydrophilic Liquid Chromatography

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In High-Performance Liquid Chromatography (HPLC), the separation of reducing sugars can typically show three possible typologies of chromatographic profiles (i.e., single peak, two resolved peaks and two peaks interconnected by a plateau) due to the rate at which the relevant α/β anomers interconversion (anomerization) can take place in relation to their elution-time. By analyzing these chromatographic profiles, thermodynamic and kinetic properties of anomerization phenomenon can be extrapolated. In this work we studied the anomerization of some monosaccharides by using a recently developed photo-click cysteine-based stationary phase through dynamic hydrophilic interaction liquid chromatography (D-HILIC) conditions. In the 5–25 °C temperature range, the ΔG#α→β and ΔG#β→α barriers were found to achieve values within the interval 21.1/22.2 kcal/mol for glucose, with differences between α→β and β→α reactions of about 0.4 kcal/mol. For xylose, in the same temperature range, the ΔG#α→β and ΔG#β→α barriers are between 20.7 to 21.5 kcal/mol, with differences between α→β and β→α reactions of about 0.2 kcal/mol. The experimental data are in agreement with those reported in literature, confirming the this new stationary phase using HILIC conditions is a robust platform to measure kinetic and thermodynamic properties of the isomerization reaction.

Cite

CITATION STYLE

APA

Calcaterra, A., Manetto, S., Buonsenso, F., Francioso, A., Pierini, M., & Villani, C. (2022). Separation of Monosaccharide Anomers on Photo-Click Cysteine-Based Stationary Phase: The α/β Interconversion Process Studied by Dynamic Hydrophilic Liquid Chromatography. Separations, 9(8). https://doi.org/10.3390/separations9080203

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free