Abstract
Mapping the epigenome is key to describe the relationship between chromatin landscapes and the control of DNA-based cellular processes such as transcription. Cleavage under targets and release using nuclease (CUT&RUN) is an in situ chromatin profiling strategy in which controlled cleavage by antibody-targeted Micrococcal Nuclease solubilizes specific protein-DNA complexes for paired-end DNA sequencing. When applied to budding yeast, CUT&RUN profiling yields precise genome-wide maps of histone modifications, histone variants, transcription factors, and ATP-dependent chromatin remodelers, while avoiding cross-linking and solubilization issues associated with the most commonly used chromatin profiling technique Chromatin Immunoprecipitation (ChIP). Furthermore, targeted chromatin complexes cleanly released by CUT&RUN can be used as input for a subsequent native immunoprecipitation step (CUT&RUN.ChIP) to simultaneously map two epitopes in single molecules genome-wide. The intrinsically low background and high resolution of CUT&RUN and CUT&RUN.ChIP allows for identification of transient genomic features such as dynamic nucleosome-remodeling intermediates. Starting from cells, one can perform CUT&RUN or CUT&RUN.ChIP and obtain purified DNA for sequencing library preparation in 2 days.
Author supplied keywords
Cite
CITATION STYLE
Brahma, S., & Henikoff, S. (2022). CUT&RUN Profiling of the Budding Yeast Epigenome. In Methods in Molecular Biology (Vol. 2477, pp. 129–147). Humana Press Inc. https://doi.org/10.1007/978-1-0716-2257-5_9
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.