A Case for Electron-Astrophysics

14Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.

Cite

CITATION STYLE

APA

Verscharen, D., Wicks, R. T., Alexandrova, O., Bruno, R., Burgess, D., Chen, C. H. K., … Told, D. (2022). A Case for Electron-Astrophysics. Experimental Astronomy, 54(2–3), 473–519. https://doi.org/10.1007/s10686-021-09761-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free