Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction

47Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

Abstract

The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45°C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

Cite

CITATION STYLE

APA

Sivagnanam, S. P., Yin, S., Choi, J. H., Park, Y. B., Woo, H. C., & Chun, B. S. (2015). Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Marine Drugs, 13(6), 3422–3442. https://doi.org/10.3390/md13063422

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free