Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 μL sample drops, with data from five simultaneous channels using 10 μs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.
CITATION STYLE
Rea, D. J., Miller, R. S., Crucian, B. E., Valentine, R. W., Cristoforetti, S., Bearg, S. B., … Chan, E. Y. (2024). Single drop cytometry onboard the International Space Station. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-46483-6
Mendeley helps you to discover research relevant for your work.