Nowcasting commodity prices using social media

16Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Gathering up-to-date information on food prices is critical in developing regions, as it allows policymakers and development practitioners to rely on accurate data on food security. This study explores the feasibility of utilizing social media as a new data source for predicting food security landscape in developing countries. Through a case study of Indonesia, we developed a nowcast model that monitors mentions of food prices on Twitter and forecasts daily price fluctuations of four major food commodities: beef, chicken, onion, and chilli. A longitudinal test over 15 months of data demonstrates that not only that the proposed model accurately predicts food prices, but it is also resilient to data scarcity. The high accuracy of the nowcast model is attributed to the observed trend that the volume of tweets mentioning food prices tends to increase on days when food prices change sharply. We discuss factors that affect the veracity of price quotations such as social network-wide sensitivity and user influence.

Cite

CITATION STYLE

APA

Kim, J., Cha, M., & Lee, J. G. (2017). Nowcasting commodity prices using social media. PeerJ Computer Science, 2017(7). https://doi.org/10.7717/peerj-cs.126

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free