Audio Event-Relational Graph Representation Learning for Acoustic Scene Classification

12Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Most deep learning-based acoustic scene classification (ASC) approaches identify scenes based on acoustic features converted from audio clips containing mixed information entangled by polyphonic audio events (AEs). However, these approaches have difficulties in explaining what cues they use to identify scenes. This letter conducts the first study on disclosing the relationship between real-life acoustic scenes and semantic embeddings from the most relevant AEs. Specifically, we propose an event-relational graph representation learning (ERGL) framework for ASC to classify scenes, and simultaneously answer clearly and straightly which cues are used in classifying. In the event-relational graph, embeddings of each event are treated as nodes, while relationship cues derived from each pair of nodes are described by multi-dimensional edge features. Experiments on a real-life ASC dataset show that the proposed ERGL achieves competitive performance on ASC by learning embeddings of only a limited number of AEs. The results show the feasibility of recognizing diverse acoustic scenes based on the audio event-relational graph.

Cite

CITATION STYLE

APA

Hou, Y., Song, S., Yu, C., Wang, W., & Botteldooren, D. (2023). Audio Event-Relational Graph Representation Learning for Acoustic Scene Classification. IEEE Signal Processing Letters, 30, 1382–1386. https://doi.org/10.1109/LSP.2023.3319233

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free