Abstract
The present study investigated the CaCO3 precipitation performance of ureolytic and non-ureolytic bacteria co-cultured as a self-healing agent for cementitious materials crack repair. Three different inoculum ratios of ureolytic Sporosarcina pasteurii and non-ureolytic Bacillus thuringiensis (10:0, 8:2, or 5:5) were used. The effect of coculturing ureolytic and non-ureolytic bacteria on microbial metabolism was investigated by measuring the rate of growth in urea-containing medium and the rate of NH4+ and CaCO3 production in urea-calcium lactate medium. The self-healing efficiency of co-cultured bacteria was examined by exposing cement mortar specimens with predefined cracks to media containing single urease-producing or co-cultured bacteria. The obtained results provide new findings, where CaCO3 precipitation is improved by co-culturing ureolytic and non-ureolytic bacteria, owing to the relatively faster growth rate of non-ureolytic bacteria. The crack filling rate correlated with the width of crack, in particular, specimens with a smaller crack width showed the faster filling effect, indicating that the crack width can be a dominant factor influencing the CaCO3 precipitation capacity of co-cultured bacteria.
Author supplied keywords
Cite
CITATION STYLE
Son, H. M., Kim, H. Y., Park, S. M., & Lee, H. K. (2018). Ureolytic/Non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair. Materials, 11(5). https://doi.org/10.3390/ma11050782
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.