Precise wavefront correction with an unbalanced nulling interferometer for exo-planet imaging coronagraphs

24Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Context. Coronagraphs of high dynamical range used for direct exo-planet detection (109-10 contrast) on small angular separation (few units) usually require an input wavefront quality of approximately ten thousandths of a wavelength rms.Aims. We propose a novel method based on a pre-optics setup that behaves partly as a low-efficiency coronagraph, and partly as a high-sensitivity wavefront aberration compensator (phase and amplitude). The combination of the two effects results in a highly accurate corrected wavefront.Methods. First, an (intensity-) unbalanced nulling interferometer (UNI) performs a rejection of part of the wavefront electric field. Then, the input aberrations of the recombined output wavefront are magnified. Because of the unbalanced recombination scheme, aberrations can be free of phase singular points (zeros) and can therefore be compensated by a downstream phase and amplitude correction (PAC) adaptive optics system, using two deformable mirrors.Results. In the image plane, the central star's peak intensity and the noise level of its speckled halo are reduced by the UNI-PAC combination: the output-corrected wavefront aberrations can be interpreted as an improved compensation of the initial (eventually already corrected) incident wavefront aberrations.Conclusions. The important conclusion is that not all of the elements in the optical setup using UNI-PAC need to reach the λ/10 000 rms surface error quality. © 2008 ESO.

Cite

CITATION STYLE

APA

Nishikawa, J., Abe, L., Murakami, N., & Kotani, T. (2008). Precise wavefront correction with an unbalanced nulling interferometer for exo-planet imaging coronagraphs. Astronomy and Astrophysics, 489(3), 1389–1398. https://doi.org/10.1051/0004-6361:20065648

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free