Shifts in soil microbial stoichiometry and metabolic quotient provide evidence for a critical tipping point at 1% soil organic carbon in an agricultural post-mining chronosequence

44Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Soil microbial C:N:P stoichiometry and microbial maintenance respiration (i.e. metabolic quotient, qCO2) were monitored along a nutrient gradient in soils from a 52-year space-for-time chronosequence of reclaimed agricultural land after brown-coal mining. Land reclamation produced loess soils of initially low (0.2%) SOC. Consecutive agricultural land management led to a gradual recovery of SOC contents. Our data revealed sudden shifts in microbial stoichiometry and metabolic quotient with increasing SOC at a critical value of 1% SOC. As SOC increased, accrual rate of C into microbial biomass decreased, whereas microbial N increased. Simultaneously, metabolic quotient strongly decreased with increasing SOC until the same critical value of 1% SOC and remained at a constant low thereafter. The microbial fractions of the soil in samples containing < 1% SOC were out of stoichiometric equilibrium and were inefficient at immobilising C due to high maintenance respiration. Increasing SOC above the threshold value shifted the soil microbes towards a new equilibrium where N became growth limiting, leading to a more efficient acquisition of C. The shift in microbial N accrual was preluded by high variation in microbial biomass N in soils containing 0.5–0.9% SOC indicative of a regime shift between microbial stoichiometric equilibria. Our data may help in establishing a quantitative framework for SOC targets that, along with agricultural intensification, may better support feedback mechanisms for a sustainable accrual of C in soils.

Cite

CITATION STYLE

APA

Clayton, J., Lemanski, K., & Bonkowski, M. (2021). Shifts in soil microbial stoichiometry and metabolic quotient provide evidence for a critical tipping point at 1% soil organic carbon in an agricultural post-mining chronosequence. Biology and Fertility of Soils, 57(3), 435–446. https://doi.org/10.1007/s00374-020-01532-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free