Abstract
The nitric oxide synthase (NOS) pathway has been clearly demonstrated to regulate angiogenesis. Increased levels of NO correlate with turnout growth and spreading in different experimental and human cancers. Drugs interfering with the NOS pathway may be useful in angiogenesis-dependent tumours. The aim of this study was to pharmacologically characterise certain ruthenium-based compounds, namely NAMI-A, KP1339, and RuEDTA, as potential NO scavengers to be used as antiangiogenic/antitumour agents. NAMI-A, KP1339 and RuEDTA were able to bind tightly and inactivate free NO in solution. Formation of ruthenium-NO adducts was documented by electronic absorption, FT-IR spectroscopy and 1H-NMR. Pretreatment of rabbit aorta rings with NAMI-A, KP1339 or RuEDTA reduced endothelium-dependent vasorelaxation elicited by acetylcholine. This effect was reversed by 8-Br-cGMP. The key steps of angiogenesis, endothelial cell proliferation and migration stimulated by vascular endothelial growth factor (VEGF) or NO donor drugs, were blocked by NAMI-A, KP1339 and RuEDTA, these compounds being devoid of any cytotoxic activity. When tested in vivo, NAMI-A inhibited angiogenesis induced by VEGF. It is likely that the antitumour properties previously observed for ruthenium-based NO scavengers, such as NAMI-A, are related to their NO-related antiangiogenic properties. © 2003 Cancer Research UK.
Author supplied keywords
Cite
CITATION STYLE
Morbidelli, L., Donnini, S., Filippi, S., Messori, L., Piccioli, F., Orioli, P., … Ziche, M. (2003). Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. British Journal of Cancer, 88(9), 1484–1491. https://doi.org/10.1038/sj.bjc.6600906
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.