Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans

69Citations
Citations of this article
131Readers
Mendeley users who have this article in their library.

Abstract

The neuromodulator dopamine plays an important role in synaptic plasticity. The effects are determined by receptor subtype specificity, concentration level, and the kind of neuroplasticity induced. D1-like receptors have been proposed to be involved in cognitive processes via their impact on plasticity. Cognitive studies in humans and animals revealed a dosage-dependent effect of D1-like receptor activation on task performance. In humans, D1-like receptor activation re-establishes plasticity under D2 receptor block. However, a dosage-dependent effect has not been explored so far. To determine the impact of the amount of D1-like receptor activation on neuroplasticity in humans, we combined sulpiride, a selective D2 receptor antagonist, with the dopamine precursor L-DOPA (25, 100, and 200 mg) or applied placebo medication. The impact on plasticity induced by anodal and cathodal transcranial direct current stimulation (tDCS) was compared with the impact on plasticity induced by excitatory and inhibitory paired associative stimulation (PAS) at the primary motor cortex of healthy humans. Stimulation-generated cortical excitability alterations were monitored by transcranial magnetic stimulation-induced motor-evoked potential amplitudes. D1-like receptor activation produced an inverted U-shaped dose-response curve on plasticity induced by both facilitatory tDCS and PAS. For excitability-diminishing tDCS and PAS, aftereffects were abolished or converted trendwise into facilitation. These data extend findings of dose-dependent inverted U-shaped effects of D1 receptor activation on neuroplasticity of the motor cortex. © 2014 the authors.

Cite

CITATION STYLE

APA

Fresnoza, S., Paulus, W., Nitsche, M. A., & Kuo, M. F. (2014). Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. Journal of Neuroscience, 34(7), 2744–2753. https://doi.org/10.1523/JNEUROSCI.3655-13.2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free