Identifying the atomic configuration of the tip apex using STM and frequency-modulation AFM with CO on Pt(111)

7Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

We investigated the atomic structure of metal tips by scanning individual CO molecules adsorbed on Pt(111) using scanning tunneling microscopy (STM) and frequency-modulation atomic force microscopy (FM-AFM). When scanning very close over a CO molecule, the frontmost atoms of the tip can be individually resolved in both the FM-AFM image and in the STM image. This is in contrast to previous work where CO was adsorbed on a different substrate: Cu(111). In this previous study, individual atoms could not be observed in the raw STM image but only in FM-AFM. We discuss the mechanisms behind the higher spatial resolution in STM. On Cu(111), the occupied surface state plays a large role in STM images near the Fermi level, and as adsorbed CO repels the surface state, it appears as a wide trough in STM images. In contrast, Pt(111) lacks an occupied surface state and an adsorbed CO molecule appears as a peak. We investigate if CO bending strongly influences the STM images, concluding that the atomic resolution of the tip over Pt(111) is due to highly localized through-molecule tunneling and CO bending is insignificant for contrast formation. Modelling the current between the CO and front atoms of the tip supports our findings.

Cite

CITATION STYLE

APA

Gretz, O., Weymouth, A. J., & Giessibl, F. J. (2020). Identifying the atomic configuration of the tip apex using STM and frequency-modulation AFM with CO on Pt(111). Physical Review Research, 2(3). https://doi.org/10.1103/PhysRevResearch.2.033094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free