Abstract
Background: Mechlorethamine [ClCH2CH2N(CH3)CH2CH2Cl], a nitrogen mustard alkylating agent, has been proven to form a DNA interstrand crosslink at a cytosine-cytosine (C-C) mismatch pair using gel electrophoresis. However, the atomic connectivity of this unusual crosslink is unknown. Methodology/Principal Findings: HPLC-UV, MALDI-TOF-MS, and ESI-MS/MS were used to determine the atomic connectivity of the DNA C-C crosslink formed by mechlorethamine, MALDI-TOF-MS of the HPLC-purified reaction product of mechlorethamine with the DNA duplex d[CTCACACCGTGGTTC]•d[GAACCACCGTGTGAG] (underlined bases are a C-C mismatch pair) indicated formation of an interstrand crosslink at m/z 9222.088 [M-2H+Na]+. Following enzymatic digestion of the crosslinked duplex by snake venom phosphodiesterase and calf intestinal phosphatase, ESI-MS/MS indicated the presence of dC-mech-dC [mech = CH2CH2N(CH3)CH2CH2] at m/z 269.2 [M]2+ (expected m/z 269.6, exact mass 539.27) and its hydrolytic product dC-mech-OH at m/z 329.6 [M]+ (expected m/z 329.2). Fragmentation of dC-mech-dC gave product ions at m/z 294.3 and 236.9 [M]+, which are both due to loss of the 4-amino group of cytosine (as ammonia), in addition to dC and dC+HN(CH3)CH = CH2, respectively. The presence of m/z 269.2 [M]2+ and loss of ammonia exclude crosslink formation at cytosine N4 or O2 and indicate crosslinking through cytosine N3 with formation of two quaternary ammonium ions. Conclusions: Our results provide an important addition to the literature, as the first example of the use of HPLC and MS for analysis of a DNA adduct at the N3 position of cytosine. © 2011 Rojsitthisak et al.
Cite
CITATION STYLE
Rojsitthisak, P., Jongaroonngamsang, N., Romero, R. M., & Haworth, I. S. (2011). HPLC-UV, MALDI-TOF-MS and ESI-MS/MS analysis of the mechlorethamine DNA crosslink at a cytosine-cytosine mismatch pair. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0020745
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.