Bayesian logistic regression using a perfect phylogeny

17Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Haplotype data capture the genetic variation among individuals in a population and among populations. An understanding of this variation and the ancestral history of haplotypes is important in genetic association studies of complex disease. We introduce a method for detecting associations between disease and haplotypes in a candidate gene region or candidate block with little or no recombination. A perfect phylogeny demonstrates the evolutionary relationship between single-nucleotide polymorphisms (SNPs) in the haplotype blocks. Our approach extends the logic regression technique of Ruczinski and others (2003) to a Bayesian framework, and constrains the model space to that of a perfect phylogeny. Environmental factors, as well as their interactions with SNPs, may be incorporated into the regression framework. We demonstrate our method on simulated data from a coalescent model, as well as data from a candidate gene study of sarcoidosis.

Cite

CITATION STYLE

APA

Clark, T. G., De Iorio, M., & Griffiths, R. C. (2007). Bayesian logistic regression using a perfect phylogeny. Biostatistics, 8(1), 32–52. https://doi.org/10.1093/biostatistics/kxj030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free