A properly designed house should provide occupants with the high level of thermal comfort at low energy demand. On many occasions investors choose to add additional insulation to the buildings to reduce heat demand. This may lead to overheating of the building without a cooling system in summer periods (these prevail in Poland). Additionally, it affects the deterioration of thermal comfort, which can only be improved by increasing ventilation. The paper presents the multi-objective optimization of the selected design parameters in a single-family building in temperate climate conditions. The influence of four types of windows, their size, building orientation, insulation of external wall, roof and ground floor and infiltration on the life cycle costs and thermal comfort is analyzed for the building without cooling. Infiltration changes during the simulation and is controlled by a special controller. Its task is to imitate the behavior of occupants in changing the supply airflow. Optimal selection of the design parameters is carried out using Non-dominated Sorting Genetic Algorithm II (NSGA-II) by coupling the building performance simulation program EnergyPlus with optimization environment. For the single-family house, optimal values of design variables for three different criteria are presented.
CITATION STYLE
Grygierek, K., & Ferdyn-Grygierek, J. (2018). Multi-objective optimization of the envelope of building with natural ventilation. Energies, 11(6). https://doi.org/10.3390/en11061383
Mendeley helps you to discover research relevant for your work.