First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials

75Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rare-earth (RE) rich intermetallics crystallizing in orthorhombic Ho6Co2Ga-type crystal structure exhibit peculiar magnetic properties that are not widely reported for their magnetic ordering, order of magnetic phase transition, and related magnetocaloric behavior. By tuning the type of RE element in RE6Co2Ga (RE = Ho, Dy or Gd) compounds, metamagnetic anti-to-paramagnetic (AF to PM) phase transitions could be tuned to ferro-to-paramagnetic (FM to PM) phase transitions. Furthermore, the FM ground state for Gd6Co2Ga is confirmed by density functional theory calculations in addition to experimental observations. The field dependence magnetocaloric and Banerjee’s criteria demonstrate that Ho6Co2Ga and Dy6Co2Ga undergo a first-order phase transition in addition to a second-order phase transition, whereas only the latter is observed for Gd6Co2Ga. The two extreme alloys of the series, Ho6Co2Ga and Gd6Co2Ga, show maximum isothermal entropy change (∣ΔSisomax(5 T)∣) of 10.1 and 9.1 J kg−1K−1 at 26 and 75 K, close to H2 and N2 liquefaction, respectively. This outstanding magnetocaloric effect performance makes the RE6Co2Ga series of potential for cryogenic magnetic refrigeration applications.

Cite

CITATION STYLE

APA

Guo, D., Moreno-Ramírez, L. M., Romero-Muñiz, C., Zhang, Y., Law, J. Y., Franco, V., … Ren, Z. (2021). First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials. Science China Materials, 64(11), 2846–2857. https://doi.org/10.1007/s40843-021-1711-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free