Sustainability assessment of municipal solid waste management requires a holistic approach in evaluating the impacts of current technology and processes. In this study, the sustainability analysis of the Municipal Solid Waste (MSW) incineration plant in Baltimore city was performed to determine its environmental, economic, and social impacts. The city’s major waste-to-energy generation plant has benefitted the city of Baltimore since inception till date in terms of waste processing, resulting in electricity and steam production for more than 40,000 homes and over 200 businesses. The life cycle impact of the incineration plant was analyzed using the Simapro life cycle assessment (LCA) software with the Building for Environmental and Economic Sustainability (BEES) database for correlation. The results obtained upon analysis show larger values of Global Warming Potential and eutrophication potential as 6.46 × 108 Gg of CO2 equivalence and 2.27 × 106 Gg N equivalence, respectively. These values resulted from the higher amount of fossil CO2 and NOx emitted from the plant. The acidification potential of 1.66 × 1017 H+ mmole eq resulted from the SO2 emitted by the incineration plant. The incineration plant exceeded the limitations set by the Environmental Protection Agency (EPA) on NOx (150 ppm), which is detrimental to the well-being of people as shown by this study. Installing an improved processing technology such as a Selected Catalytic Reactor (SCR) can drastically reduce the NOx emission to 45 ppm. Life Cycle Assessment was confirmed suitable in evaluating the environmental impacts of the MSW-to-energy treatment approach.
CITATION STYLE
Alamu, S. O., Wemida, A., Tsegaye, T., & Oguntimein, G. (2021). Sustainability assessment of municipal solid waste in Baltimore USA. Sustainability (Switzerland), 13(4), 1–12. https://doi.org/10.3390/su13041915
Mendeley helps you to discover research relevant for your work.