A Simple Method for the Synthesis of a Coral-like Boron Nitride Micro-/Nanostructure Catalyzed by Fe

7Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Catalyzed by Fe, novel a coral-like boron nitride (BN) micro-/nanostructure was synthesized from B2O3 by a ball milling and annealing process. Observations of the morphology of the product indicated that the coral-like BN micro-/nanostructure consists of a bamboo-shaped nanotube stem and dense h-BN nanoflakes growing outward on the surface of the nanotube. Experimental results showed that the morphology of the BN nanotube was greatly dependent on the anneal process parameters. With the annealing time increasing from 0.5 h to 4 h, the morphology developed from smooth BN nanotubes, with a diameter size of around 100 nm, to rough, coral-like boron nitride with a large diameter of 3.6 μm. The formation mechanism of this coral-like BN micro-/nanostructure is a two-stage growth process: bamboo-shaped BN nanotubes are first generated through a vapor–liquid–solid (VLS) mechanism and then nanoflakes grow surrounding the surface of the nanotube. Acid pickling and a hydrolysis process were carried out to remove Fe, iron nitrogen and unreacted B2O3 impurities.

Cite

CITATION STYLE

APA

Li, Y., Wang, X., Wang, J., Wang, X., & Zeng, D. (2023). A Simple Method for the Synthesis of a Coral-like Boron Nitride Micro-/Nanostructure Catalyzed by Fe. Nanomaterials, 13(4). https://doi.org/10.3390/nano13040753

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free