Abstract
The transformation of railway infrastructure and traction equipment is an ideal way to realize energy savings of urban rail transit trains. However, upgrading railway infrastructure and traction equipment is a high investment and difficult process. To produce energy-savings in the urban rail transit system without changing the existing infrastructure, we propose an energy-saving optimization method by optimizing the traction curve of the train. Firstly, after analyzing the relationship between the idle distance and running energy-savings, an optimization method of traction energy-savings based on the combination of the inertia motion and energy optimization is established by taking the maximum idle distance as the objective; and the maximum allowable running speed, passenger comfort, train timetable, maximum allowable acceleration and kinematics equation as constraints. Secondly, a solution method based on the combination of the adaptive dynamic multimodal differential evolution algorithm and the Q learning algorithm is applied to solve the optimization model of energy-savings. Finally, numeric experiments are conducted to verify the proposed method. Extensive experiments demonstrate the effectiveness of the proposed method. The results show that the method has significant energy-saving properties, saving energy by about 11.2%.
Author supplied keywords
Cite
CITATION STYLE
Lu, G., He, D., & Zhang, J. (2023). Energy-Saving Optimization Method of Urban Rail Transit Based on Improved Differential Evolution Algorithm. Sensors, 23(1). https://doi.org/10.3390/s23010378
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.