Abstract
A significant fraction of mice deficient in either glial cell-derived neurotrophic factor (GDNF) or its co-receptors (Gfrα1, Ret), undergoes ureteric bud (UB) outgrowth leading to the formation of a rudimentary kidney. Previous studies using the isolated Wolffian duct (WD) culture indicate that activation of fibroblast growth factor (FGF) receptor signaling, together with suppression of BMP/Activin signaling, is critical for GDNF-independent WD budding (Maeshima et al., 2007). By expression analysis of embryonic kidney from Ret(-/-) mice, we found the upregulation of several FGFs, including FGF7. To examine the intracellular pathways, we then analyzed GDNF-dependent and GDNF-independent budding in the isolated WD culture. In both conditions, Akt activation was found to be important; however, whereas this occurred through PI3-kinase in GDNF-dependent budding, in the case of GDNF-independent budding, Akt activation was apparently via a PI3-kinase independent mechanism. Jnk signaling and the AP-1 transcription factor complex were also implicated in GDNF-independent budding. FosB, a binding partner of c-Jun in the formation of AP-1, was the most highly upregulated gene in the ret knockout kidney (in which budding had still occurred), and we found that its siRNA-mediated knockdown in isolated WDs also blocked GDNF-independent budding. Taken together with the finding that inhibition of Jnk signaling does not block Akt activation/phosphorylation in GDNF-independent budding, the data support necessary roles for both FosB/Jun/AP-1 signaling and PI3-kinase-independent activation of Akt in GDNF-independent budding. A model is proposed for signaling events that involve Akt and JNK working to regulate GDNF-independent WD budding.
Author supplied keywords
Cite
CITATION STYLE
Tee, J. B., Choi, Y., Dnyanmote, A., DeCambre, M., Ito, C., Bush, K. T., & Nigam, S. K. (2013). GDNF-independent ureteric budding: Role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling. Biology Open, 2(9), 952–959. https://doi.org/10.1242/bio.20135595
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.