Atf3‐induced mammary tumors exhibit molecular features of human basal‐like breast cancer

9Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Basal‐like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem‐cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human therapeutic development. ATF3 is a potent oncogene that is aber-rantly expressed in most human breast cancers. In the BK5.ATF3 mouse model, overexpression of ATF3 in the basal epithelial cells of the mammary gland produces tumors that are characterized by activation of the Wnt/β‐catenin signaling pathway. Here, we used RNA‐Seq and microRNA (miRNA) microarrays to better define the molecular features of BK5.ATF3‐derived mammary tu-mors. These analyses showed that these tumors share many characteristics of human BLBC including reduced expression of Rb1, Esr1, and Pgr and increased expression of Erbb2, Egfr, and the genes encoding keratins 5, 6, and 17. An analysis of miRNA expression revealed reduced levels of Mir145 and Mir143, leading to the upregulation of their target genes including both the pluripotency factors Klf4 and Sox2 as well as the cancer stem‐cell‐related gene Kras. Finally, we show through knock-down experiments that ATF3 may directly modulate MIR145/143 expression. Taken together, our results indicate that the ATF3 mouse mammary tumor model could provide a powerful model to define the molecular mechanisms leading to BLBC, identify the factors that contribute to its aggressiveness, and, ultimately, discover specific genes and gene networks for therapeutic targeting.

Cite

CITATION STYLE

APA

Yan, L., Gaddis, S., Coletta, L. D., Repass, J., Powell, K. L., Simper, M. S., … Macleod, M. C. (2021). Atf3‐induced mammary tumors exhibit molecular features of human basal‐like breast cancer. International Journal of Molecular Sciences, 22(5), 1–18. https://doi.org/10.3390/ijms22052353

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free