Abstract
Diminished levels of docosahexaenoic acid (22:6n-3), the major fatty acid (FA) synthesized from α-linolenic acid (18:3n-3), have been implicated in functional impairment in the developing and adult brain. We have now examined the changes in phospholipid (PL) molecular species in the developing postnatal cortex, a region recently shown to be affected by a robust aberration in neuronal cell migration, after maternal diet α-linolenic acid deprivation (Yavin et al. (2009)Neuroscience162(4),1011). The frontal cortex PL composition of 1- to 4-week-old rats was analyzed by gas chromatography and electrospray ionization/tandem mass spectrometry. Changes in the cortical PL molecular species profile by dietary means appear very specific as 22:6n-3 was exclusively substituted by docosapentaenoic acid (22:5n-6). However, molecular species were conserved with respect to the combination of specific polar head groups (i.e. ethanolamine and serine) in sn-3 and defined saturated/mono-unsaturated FA in sn-1 position even when the sn-2 FA moiety underwent diet-induced changes. Our results suggest that substitution of docosahexaenoic acid by docosapentaenoic acid is tightly regulated presumably to maintain a proper biophysical characteristic of membrane PL molecular species. The importance of this conservation may underscore the possible biochemical consequences of this substitution in regulating certain functions in the developing brain. © 2010 International Society for Neurochemistry.
Author supplied keywords
Cite
CITATION STYLE
Brand, A., Crawford, M. A., & Yavin, E. (2010). Retailoring docosahexaenoic acid-containing phospholipid species during impaired neurogenesis following omega-3 α-linolenic acid deprivation. Journal of Neurochemistry, 114(5), 1393–1404. https://doi.org/10.1111/j.1471-4159.2010.06866.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.