Abstract
The minus-ended microtubule motor cytoplasmic dynein contains a number of low molecular weight light chains including the 14-kDa Tctex-1. The assembly of Tctex-1 in the dynein complex and its function are largely unknown. Using partially deuterated, 15N,13C-labeled protein samples and transverse relaxation-optimized NMR spectroscopic techniques, the secondary structure and overall topology of Tctex-1 were determined based on the backbone nuclear Overhauser effect pattern and the chemical shift values of the protein. The data showed that Tctex-1 adopts a structure remarkably similar to that of the 8-kDa light chain of the motor complex (DLC8), although the two light chains share no amino acid sequence homology. We further demonstrated that Tctex-1 binds directly to the intermediate chain (DIC) of dynein. The Tctex-1 binding site on DIC was mapped to a 19-residue fragment immediately following the second alternative splicing site of DIC. Titration of Tctex-1 with a peptide derived from DIC, which contains a consensus sequence R/KR/KXXR/K found in various Tctex-1 target proteins, indicated that Tctex-1 binds to its targets in a manner similar to that of DLC8. The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.
Cite
CITATION STYLE
Mok, Y. K., Lo, K. W. H., & Zhang, M. (2001). Structure of Tctex-1 and Its Interaction with Cytoplasmic Dynein Intermediate Chain. Journal of Biological Chemistry, 276(17), 14067–14074. https://doi.org/10.1074/jbc.m011358200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.